THE EFFECTS OF PEDIATRIC SIV ON THE BLOOD BRAIN BARRIER

LAWRENCE, JEROME & ET AL
HOWARD UNIVERSITY
MEDICAL SCHOOL
Mr. Jerome Lawrence
Mr. Herman Kamboj
Dr. Mark W. Burke
Howard University Medical School

Ms. Kristina Abel
University of North Carolina

Mr. Koen Van Rompey
University of California at Davis

The Effects of Pediatric SIV on The Blood Brain Barrier

Synopsis:

Pediatric HIV infection remains a global health crisis with an estimated 1,500 children under the age of 15 years becoming infected with HIV-1 each day in the developing world. Children are much more susceptible to HIV-1 neurological impairments than adults, possibly due to a viral/blood brain barrier interaction. Using the Macaca mulatta as a model we test the hypothesis that perinatal HIV infection down regulates the pericyte population leading to a compromised blood brain barrier.
THE EFFECTS OF PEDIATRIC SIV ON THE BLOOD BRAIN BARRIER

Jerome Lawrence, Howard University
Co-Author: Herman Kamboj, Howard University, Medical Student, 2017; Kristina Abel, University of North Carolina; Koen Van Rompey, University of California at Davis; Mark W. Burke, Howard University

Pediatric HIV infection remains a global health crisis with an estimated 1,500 children under the age of 15 years becoming infected with HIV-1 each day in the developing world. Children are much more susceptible to HIV-1 neurological impairments than adults, possibly due to a viral/blood brain barrier interaction. Neuron-glial antigen 2 (NG2), is responsible for protein kinase binding, cell proliferation as well as the basement membrane of the blood brain barrier. We have previously shown that pediatric simian immunodeficiency virus (SIV) infection results in significant demyelination, loss of hippocampal and immature neurons. Here we test the hypothesis that perinatal HIV infection down regulates the pericyte population leading to a compromised blood brain barrier. Newborn rhesus macaques (Macaca mulatta) were inoculated with SIVmac251 (n=4) or vehicle (control n=4) within 72 hours of birth. After a 6-18 week survival time, the animals were sacrificed and the brains prepared for quantitative histopathological analysis. Matched sections for control and SIV+ subjects were immunostained with mouse anti-NG2 with an Alexa fluorophore 555 secondary antibody. Sections were then counterstained with Tomato Lectin to identify blood vessels. The NG2 antibody is currently being optimized for primate tissue. Data from these experiments will identify the role that the blood brain barrier plays in the pathogenesis of pediatric HIV infection.

References:
Brian T. Hawkins and Thomas P.Davis. The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Department of Medical Pharmacology, the University of arizona College of Medicine, Tucson, Arizona. doi: 10.1124/pr.57.2.4. Pharmacological Reviews June 2005 vol. 57 no. 2 173-185
Curtis Kimberly, Rollins Matthew, Carryl Heather, Koen K, Rompay A. Van, Abel Kristina, Burke Mark W. Reduction of Pyramidal and Immature Hippocampal Neurons in Pediatric SIV Infection. Departments of Physiology & Biophysics, and Psychiatry Howard University, Washington D.C., U.S.A.; California National Primate Research Center, University of California Davis, Davis California, U.S.A.; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, N.C., U.S.A.

Funder Acknowledgement: This work is funded by the District of Columbia Developmental Center for AIDS Research (DC D-CFAR), an NIH-funded program (P30AI087714).

Student support was provided from the Washington Baltimore Hampton Roads Louis Stokes Alliance For Minority Participation (WBHR-LSAMP) for Jerome Lawrence

Faculty Advisor/Mentor: Dr. Mark W. Burke, Assistant Professor, Howard University Medical School Physiology Department.